effectively unbreakable cryptosystem - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

effectively unbreakable cryptosystem - traduzione in russo

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

effectively unbreakable cryptosystem      
практически нераскрываемая криптосистема (вследствие неокупаемости затрат времени и средств на криптоанализ) практически нераскрываемая криптосистема (вследствие неокупаемости затрат времени и средств на криптоанализ)
unbreakable         
WIKIMEDIA DISAMBIGUATION PAGE
Unbreakable (album); Unbreakable (single); Unbreakable (song) (disambiguation); Unbreakable (song); Unbreakable (Album); Unbreakable (disambiguation)
unbreakable adj. неломкий, нехрупкий, небьющийся
unbreakable         
WIKIMEDIA DISAMBIGUATION PAGE
Unbreakable (album); Unbreakable (single); Unbreakable (song) (disambiguation); Unbreakable (song); Unbreakable (Album); Unbreakable (disambiguation)

[ʌn'breikəb(ə)l]

общая лексика

небьющийся

прилагательное

общая лексика

неломкий

нехрупкий

небьющийся

неломкий, нехрупкий, небьющийся

Definizione

unbreakable
¦ adjective not liable to break or able to be broken.

Wikipedia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.

Traduzione di &#39effectively unbreakable cryptosystem&#39 in Russo